
Submodule construction tool1

J. Drissi*, G. v. Bochmann**

* Dept. IRO, Universite de Montreal, CP. 6128, Succ. Centre-Ville, Montreal, H3C 3J7,Canada,
Phone: (514) 343-6161, Fax: (514) 343-5834,drissi@iro.umontreal.ca

** School of Information Technology & Engineering, University of Ottawa, Colonnel By Hall
(A510), P.O.Box 450 Stn A,Ottawa,Ont.,K1N 6N5, Canada, Phone : (613) 562-5800 ext. 6205, Fax

562-5175 email:bochmann@site.uottawa.ca

Abstract. Using the programming language Java, we developed the Submodule
Construction Tool, which implements algorithms for the submodule construction
problem. The submodule construction problem (SCP) is to construct the specification
of a submoduleX when the specification of the system and all submodules butX are
given. This problem is encountered in the hierarchical design of complex systems, in
the synthesis of controllers and in the reuse of components. The tool requires a
number of files as input and produces a file containing the result. For the input/output
Finite State Machine model, we can obtain the generic solution, the minimal solution
with respect to the number of states, we can check if a given FSM is a solution and we
can find the minimal reduction of a given observable nondeterministic FSM. For the
I/O automata model, we can find the generic solution for the safe realization relation
and the subtype relation, we can check if a given I/O automaton is a safe realization
or a subtype of another I/O automaton, we can compose I/O automata, we can find the
resulting I/O automaton after hiding a subset of the alphabet and finally we can obtain
the minimal trace equivalent I/O automaton.

1. Introduction

One common problem, encountered in the hierarchical design of complex systems, in the
synthesis of controllers and in the reuse of components, is the submodule construction
problem, also called factorization problem or equation solving problem. The submodule
construction problem (SCP) is to construct the specification of a submoduleX when the
specification of the system and all submodules butX are given. Such a problem may be
formulated mathematically by the equation (C||X)RA, whereC represents the specification of
the known part of the system,X represents the specification of the component to be designed,
A represents the specification of the whole system, || is a composition operator and R is a
conformance relation. The SCP was first formulated and treated in [3], where specifications
are expressed in terms of execution sequences, and trace equivalence was used as conformance
relation. In [4], the author uses Milner's Calculus of Communicating Systems to model the
same problem. Many other works [5] [6] have been done using labelled transition systems as
a model for the specifications and the strong and/or the observational equivalences as
conformance relations. In [1], we consider this problem in the context of the input/output
Finite State Machine model (I/O FSM) [7]. The direct application of an approach based on
the LTS model is not possible since the solutions obtained are not in general I/O FSMs. We
have to add constraints on the environment behavior to obtain the system's behavior in the
form of an I/O Finite State Machine. We have developed a method for constructing all the
solutions when the specifications are given in the form of deterministic completely specified
input/output Finite State Machines and the trace equivalence relation is used as conformance
relation. This work was generalized in [8] to the case where the specifications are given in

1. This work was partially supported by the NSERC Strategic grant SRTGP200 "Methods for the systematic
testing of distributed software systems" and an NSERC Research grant.

the form of nondeterministic completely specified input/output Finite State Machines and the
reduction relation is used as conformance relation. In [2], we generalize our previous work
by dealing with nondeterministic partially specified input/output Finite State Machines and
by using other criteria such as complete trace equivalence, quasi-equivalence and reduction
of nondeterminism. For this purpose, we consider partial I/O automata for systems
specification, which is more general than input/output Finite State Machines. An I/O
automaton corresponding to a given input/output Finite State Machine can always be obtained
by unfolding each atomic input/output transition s-x/y->s' of the input/output Finite State
Machine into two consecutive transitions s-x->s” and s”-y->s' of the corresponding I/O
automaton.

This paper is structured as follows. In Section 2, we present the theoretical background
used to develop the Submodule Construction Tool (SCT). In Section 3, we give a description
of the tool. Section 4 illustrates with examples the use of the tool. Finally, in Section 5 we
conclude the paper.

2. Theoretical background

The I/O automata model is defined in [9]. An I/O automaton (brieflyIOA) A, is a 5-tuple
(SA, IA, OA, TA, soA) whereSA is a finite set of states withsoA as the initial state,IA is a non-
empty, finite set of inputs,OA is a non-empty, finite set of outputs withIA∩OA=Ø and
TA⊆SA×(IA∪OA)×SA is a transition set. An element (s, u, s') in TA is denoted bys-u−>s'. If
for eachs in SA and allx in IA there existss' in SA such thats-x->s', thenA is said to be
completely specified or input-enabled; otherwise A is partially specified. A fundamental
property of the model of I/O automata is that there is a very clear distinction between those
actions that are performed under the control of the automaton and those actions that are
performed under the control of its environment. An automaton's transitions are classified as
either "input" or "output".

In typed object-oriented languages the notion of subtype, that is, a conformity relation
between types, is defined. A type P conforms to another type Q if P provides at least the
operations of Q (P may also provide additional operations). Moreover, the types of the results
of P's operations must conform to the types of the results of the corresponding operations of
Q. Finally, the types of the arguments of Q's operations must conform to those of P's operations
[10]. The idea behind the notion of subtype is the ability to use an instance of a subtype of a
type T whenever an instance of type T is required to do a job.

While the subtyping relation of object-oriented languages is mainly concerned with the
available operations and the types of their parameters, we are concerned with the dynamic
behavior of objects, that is, of I/O automata, considering the allowed sequences of input and
output operations. We define a subtype relation for the same purpose as in object-oriented
languages, i.e. the possibility to replace any subsystem by an instance of its subtypes without
changing the system's behavior.

When composing a collection of partial I/O automata, problems due to unspecified
reception may appear when a receivingIOA does not have an input transition originating from
the present state when the sendingIOA executes a corresponding output transition. A
composition of a collection of I/O automata is said to be safe if it does not contains unspecified
receptions [11][12].

We define the safe realization of anIOA A by a compositeIOA B=B1||B2||...||Bn, as follows:
for any environment modeled by anIOA E, if the composition of A and E is safe then the
composition of B1, B2,..., Bn and E is also safe. The safe realization criterion does not allow
us to enforce mandatory output behaviors in certain given states, i.e. anIOA B which is a safe
realization of anIOA A, will accept all the inputs accepted from the initial state of A and may
produce no output. To deal with the problem of mandatory output behaviors and also to be
able to represent the set of solutions to the equation (C ||X)RA as the set of subtypes of a
particular type (or model) in the same modeling framework, we enhance the model of I/O
automata by allowing the imposing of conditions on the set of traces from a given state. We
call such a model an “I/O automata with optional complete traces”. With each states we
associate two sets: the first set contains sets of traces froms such that at least one trace in each
set must be present in any implementation of this automaton; the second set is a subset of the

traces froms and each time an execution, starting ins, is a prefix of an element of this set, the
execution should progress to complete a trace in this set. We assume that an implementation
is a normal (partial)IOA. We introduce a progress property which formalizes the preceding
notion. Moreover, by requiring safe realization and realization of the progress property, we
obtain the subtype relation. We show that the subtype relation is a generalization of the well
known criteria trace equivalence, complete trace equivalence, quasi-equivalence and
reduction.

 Since in a composition of a collection of I/O automata the sets of inputs are not disjoint,
we generalize the architecture (Figure 1) by allowing the component that will be designed, to
observe some interactions between the environment and the context. This is done by adding
to the equation a constraint on the required set of inputs of the solution. For the two criteria,
safe realization and subtype, we propose for each an algorithm that produces anIOA solution
to the equation (C ||X) RA under the constraint IX=In if such a solution exists. We prove that
the set of possible solutions is then either the set of safe realizations or the set of subtypes of
the obtained solution, depending on which criterion was in the equation.

3. Description of the Submodule Construction Tool

The object-oriented programming language Java is used to implement the algorithms in
[1][2]. The main goal of the tool is the generation of the generic solution for the submodule
construction problem for specifications given as I/O FSMs or as I/O automata. A generic
solution is a solution from which we can derive all the solutions. For the I/O FSM model, the
operations present in the tool are :

- the determination of the generic solution for deterministic completely specified
FSMs where the relation used is trace equivalence,

OA

IA

?Context C

External inputs of C non-observable
 by the component

External inputs of C observable by the component

Internal inputs of C

Internal outputs of C

External outputs of C
non-observable by the component

External outputs of C observable by the component

Component

External inputs which are not in the input
 alphabet of the context

 External outputs which
 are not produced by the context

Figure 1: Composition architecture.

Figure 2: Tool interface

- the determination of the generic solution for nondeterministic completely specified
FSMs where the relation used is reduction,

- the determination of the generic solution for nondeterministic partially specified
FSMs where the relation used is quasi-equivalence,

- the derivation of the minimal solution with respect to the number of states,
- we can check if a given FSM is a solution of our equation,
- we can find the minimal reduction of a given observable nondeterministic FSM.

For the I/O automata model, the operations present in the tool are :
- we can find the generic solution for the safe realization criterion and the subtype cri-

terion,
- we can check if a givenIOA is a safe realization or a subtype of anotherIOA,
- we can compose I/O automata,
- we can find the resultingIOA after hiding a subset of the alphabet,
- we can obtain the minimal trace equivalentIOA.

The tool is composed of a number of Java classes, the most important are :
- Menu class, it implements the user interface of the tool.
- IOAutomaton class, it deals with the representation of anIOA and the operation on

IO automata like the composition, the hiding of actions and the minimization.
- IOAWOCT class, it deals with the representation of an I/O automaton with optional

complete traces and the associated operations like the composition, the hiding of
action and the deletion of prohibited traces.

- ReadFile and OutFile classes which are concerned with the transformation between
the external and the internal representation of the specifications.

- SafeR class which implement the steps of the algorithm for the construction of the
generic solution for the safe realisation relation.

- Subtype class which implement the steps of the algorithm for the construction of the
generic solution for the subtype relation.

- IsSafeR and IsSubtype classes which allow to check if a given specification is a solu-
tion to a given equation.

More informations and a copy of the tool can be obtained from the following Web site
address : http://www.iro.umontreal.ca/~drissi.

4. Illustration of the use of the tool

In the following, we will illustrate with an example the work of the tool. We consider the
IO automata model, and we resolve the equation (C ||X) RA where R represents the subtype
relation. We consider for the context theIOA C of Figure 3 withIC={x1, x2, z1, z2, z3, z4} and
OC={u, y1, y2}, for the whole system the IO automata with optional complete tracesA
corresponding to theIOAA of Figure 3 withIA={x1, x2, x3} and OA={y1, y2, y3}, with the
following constraints on the outputs in the states ofA, MTA={(1, Ø), (2, {{y1, y2}}), (3,
{{ y2}}), (4, {{ y3}})}, an element (s, Y) of MTA means that at least one element inY is a
mandatory output in the states. We note that in the case of this example the subtype relation
reduces to the reduction relation. The set of inputs required for the solution isIn={x1, x3, u},
which means that the component to be designed will observex1 but not x2, y1 and y2.

a a

a a a

a

a

ax1

y1

u

z2 z3

z1

z4

x2

u

z2

y2

z1

z3

a a a

a

x1

y1 y2

x3 y3

x2

y2

The context C
The whole system IOAA

Figure 3: The specification of the context and the whole system.

In this case, the tool requires three files as input : the first file contains the specification of
the context, the second file contains the specification of the whole system and the third file
contains the required alphabet for the solution. Figure 4 illustrates the syntax of the preceding
files.

Since in this case the solution exists, the tool will display the message in Table 1 :

The file containing the specification of the generic solutionSol is in the current directory,
it have the same syntax as the file containing the specification of the whole system. In our
example the obtained generic solution is shown in Figure 5, and the sets of constraints are :

MTSol ={(p, {uz2}), (t, Ø), (q, {u(z2u + z3u)*z1, u(z2u + z3u)*z4}), (s, {y3}), (r , Ø)}, and
OCTSol ={(p, {uz2}), (t, Ø), (q, {u(z2u + z3u)*z1, u(z2u + z3u)*z4}), (s, {y3}), (r , Ø)}.

THE SPECIFICATION OF THE GENERIC SOLUTION IS IN FILE : SUBTYPEGENSOL.txt
THE INPUT ALPHABET IS : { x1, x3, u}
THE OUTPUT ALPHABET IS : { z1, z2, z3, z4, y3}
THE NUMBER OF STATES IS : 5

Table 1: The message displayed by the tool

// The specification of the context
//INPUT SET
x1;
x2;
z1;
z2;
z3;
z4;
END;
//OUTPUT SET
u;
y1;
y2;
END;
//STATE SET
a;
b;
c;
d;
e;
f;
g;
END;
//TRANSITION SET
a - x1 - b;
b - u - c;
c - z1 - d;
c - z2 - b;
c - z3 - b;
c - z4 - g;
d - y1 - a;
a - x2 - e;
e - u - f;
f - z1 - d;
f - z2 - g;
f - z3 - h;
g - y2 - a;
END;

// The specification of the whole system
//INPUT SET
x1;
x2;
x3;
END;
//OUTPUT SET
y1;
y2;
y3;
END;
//STATE SET
A1;
A2;
A3;
A4;
END;
//TRANSITION SET
A1 - x1 - A2;
A1 - x2 - A3;
A1 - x3 - A4;
A2 - y1 - A1;
A2 - y2 - A1;
A3 - y2 - A1;
A4 - y3 - A1;
END;
//OPTIONAL COMPLETE TRACES
END;
//MANDATORY TRACES
STATE 2: CHOIX : y1; y2;
STATE 3 : CHOIX : y2;
STATE 4 : CHOIX : y3;
END;

// The specification of the required input set
x1;
x3;
u;
END;

Figure 4: Illustration of the syntax of the input files required by the tool.

q p t

sr

x1
u

z2

y3x3z1

z4

u
z2

z3

Figure 5: The IO automaton corresponding to the generic solutionSol.

We have used the tool to derive a controller for a system defined in [13]. We have also
used the tool to derive the specification of the protocol entity Responder for the INRES
protocol [14].

5. Conclusion

We have presented in this paper the Submodule Construction Tool. This tool was developed
using the programming language Java. It implements algorithms for the submodule
construction problem for the input/output Finite State Machine model and the I/O automata
model for various conformance relations. For the input/output Finite State Machine model,
we consider the trace equivalence, quasi-equivalence and reduction conformance relations.
For the I/O automata model, we consider the safe realization and subtype conformance
relations. The subtype relation is a generalization of the trace equivalence, quasi-equivalence
and reduction conformance relations, while the safe realization relation is implied by all the
above conformance relations. We continue experimenting with the tool in other application
cases. We presently work on extending the tool to deal with Timed I/O automata model.

References

[1] J. Drissi, N. Yevtushenko, A. Petrenko and G. v. Bochmann,On The design of a submodule based on
the input/output FSM model, Technical Report No. 1120, University of Montreal, April 1998.

[2] J. Drissi and G. v. Bochmann,Submodule construction for systems modelled by I/O automata, 1998
(in preparation).

[3] P.Merlin, G. v. Bochmann, On the Construction of Submodule Specifications and Communication
Protocols, ACM Trans. on Programming Languages and Systems, Vol. 5, No. 1, pp. 1-25, Jan. 1983.

[4] M. W. Shields, Implicit System Specification and the Interface Equation, The Computer Journal, Vol.
32, No. 5, 1989.

[5] H. Qin and P. Lewis,Factorisation of Finite State Machines under Strong and Observational
Equivalences, Journal of Formal Aspects of Computing, Vol. 3, pp 284-307, July-Sept. 1991.

[6] E. Haghverdi and H. Ural,An Algorithm for Submodule Construction, Technical report of the
Department of computer Science, University of Ottawa, 1996.

[7] A. Gill, Introduction to the theory of Finite-State Machines, Mc Graw-Hill Book Company, Inc, 1962.
[8] A. Petrenko and N. Yevtushenko,Solvingasynchronous equations, To appear in the proceeding of

FORTE/PSTV'98, Paris, 1998.
[9] N. A. Lynch and M. R. Tuttle,AN INTRODUCTION TO INPUT/OUTPUT AUTOMATA, MIT/LCS/

TM-373, Laboratory for computer science, Massachusetts Institute of Technology, Nov. 1998.
[10] A. Black, N. Hutchinson, E. Jul, H. Levy and L. Carter,Distribution and Abstract Types in Emerald,

IEEE Transaction on Software Engineering, vol. SE-13, no. 1, pp. 65-76, January 1987.
[11] R. Negulescu and J. A. Brzozowski,Relative Liveness : from intuition to automated verification,

Research report CS-95-32, University of Waterloo, Canada, 1995.
[12] S. G. H. Kelekar George W.,Synthesis of protocols and protocol converters using the submodule

construction approach, Proceedings of Protocol Specification, Testing and Verification, XIII, A.
Danthine, G. Leduc, P. Wolper (Editors), 1994.

[13] Akira Fusaoka, Hirohisa Seki, Kasuko Takahashi,A description and Reasoning of Plant Controllers
in Temporal Logic, Central Research Laboratory, Mitsubishi Electric Corporation, Amagasaki,
Hyogo, Japan, 1986.

[14] D. Hogrefe,OSI formal specification case study: the Inres protocol and service, Institut fur Informatik,
Univeritat Bern, Switzerland,1992.

